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Abstract

■ Native language experience plays a critical role in shaping
speech categorization, but the exact mechanisms by which it
does so are not well understood. Investigating category learn-
ing of nonspeech sounds with which listeners have no prior
experience allows their experience to be systematically con-
trolled in a way that is impossible to achieve by studying nat-
ural speech acquisition, and it provides a means of probing
the boundaries and constraints that general auditory percep-
tion and cognition bring to the task of speech category learn-
ing. In this study, we used a multimodal, video-game-based
implicit learning paradigm to train participants to categorize
acoustically complex, nonlinguistic sounds. Mismatch negativity

(MMN) responses to the nonspeech stimuli were collected be-
fore and after training, and changes in MMN resulting from the
nonspeech category learning closely resemble patterns of
change typically observed during speech category learning.
This suggests that the often-observed “specialized” neural re-
sponses to speech sounds may result, at least in part, from
the expertise we develop with speech categories through ex-
perience rather than from properties unique to speech (e.g.,
linguistic or vocal tract gestural information). Furthermore,
particular characteristics of the training paradigm may inform
our understanding of mechanisms that support natural speech
acquisition. ■

INTRODUCTION

In speech perception, the mapping of acoustic variabil-
ity to meaning is language specific and must be learned
through experience with oneʼs native language. It is well
established that this learning begins in early infancy and
exhibits the hallmarks of categorization, whereby percep-
tual space is warped to exaggerate differences between
native-language speech sound categories and diminish dif-
ferenceswithin categories (Kuhl,Williams, Lacerda, Stevens,
& Lindblom, 1992; Werker & Tees, 1984). Despite there
being an appreciation for the profound influence of per-
ceptual categorization on speech processing, we do not
yet have a complete understanding of the mechanisms
that support speech category acquisition. Part of the chal-
lenge lies in the difficulty of experimentally probing the
effects of experience; even infant participants have had
significant exposure to native-language speech (DeCasper,
Lecanuet, Busnel, Granier-Deferre,&Maugeais, 1994;Moon,
Cooper, & Fifer, 1993) that is impossible to quantify or
systematically control. It is possible, however, to investigate
mechanisms supporting general auditory category learn-
ing in an experimentally controlled manner by studying
the effects of short-term, laboratory-based experience on
perception of nonspeech sounds to which listeners have
not had previous exposure. Training using nonspeech, as

opposed to foreign language sounds that often experience
perceptual interference from native-language speech cate-
gories (e.g., Flege & MacKay, 2004; Guion, Flege, Akahane-
Yamada, & Pruitt, 2000), provides a means of probing the
boundaries and constraints that general auditory percep-
tion and cognition bring to the task of speech category
acquisition (Holt & Lotto, 2008). Similar lines of research
in the visual domain have yielded important insights into
the neural mechanisms underlying face perception; for ex-
ample, the work of Gauthier, Tarr, Anderson, Skudlarski,
and Gore (1999) and Gauthier and Tarr (1997) on the per-
ception of nonface objects with which participants develop
expertise in laboratory-based training.

The auditory categorization literature is small relative to
that of visual categorization, and most studies of auditory
category learning have used training methods whereby
participants make overt categorization judgments and re-
ceive explicit feedback (e.g., Holt & Lotto, 2006; Goudbeek,
Smits, Swingley, & Cutler, 2005;Mirman,Holt, &McClelland,
2004;Guenther,Husain,Cohen,&Shinn-Cunningham,1999).
Although social signals (Kuhl, Tsao, & Liu, 2003) and the
kinds of feedback they may provide can shape speech ac-
quisition (Goldstein & Schwade, 2008), explicit feedback
and category labels do not seem to be necessary or even
available for the acquisition of speech categories in infancy
( Jusczyk, 1997).

In a recent study, participants received implicit, multi-
modal auditory training through a video game in whichCarnegie Mellon University
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they encountered characters, rapidly identified them,
and executed appropriate actions toward them (either
“shooting” or “capturing”) on the basis of their identities.
Throughout the game, charactersʼ visual appearances
consistently co-occurred with categories of acoustically
varying, auditory nonspeech stimuli (Wade & Holt, 2005).
Participants received no explicit directions to associate
the sounds they heard to the visual stimuli, but the game
was designed such that doing so was beneficial to perfor-
mance. As an assessment of learning following training,
players categorized sounds explicitly by matching familiar
and novel sound category exemplars to the visual charac-
ters. Participantsʼ performance on this task indicated sig-
nificant category learning and generalization relative to
control participants (who heard the same sounds in the
game but did not experience a consistent sound category
mapping) after only 30 min of game play (Wade & Holt,
2005). The specific characteristics of the sounds defining
the categories required that participants go beyond trivial
exemplar memorization or use of unidimensional acoustic
cues to learn higher dimensional acoustic relationships
typically characteristic of speech categories. Furthermore,
participants showed evidence of generalizing their learn-
ing to novel acoustic stimuli. These results indicate that
even complex nonspeech auditory categories can be
learned quickly without explicit feedback if there exists a
functional relationship between sound categories and
events in other modalities.

Very little is understood, however, about the neural
changes that underlie this type of learning and whether
they resemble those observed in speech category acqui-
sition. There exists general debate regarding whether
general auditory mechanisms, such as those that would
be involved in learning and processing nonspeech au-
ditory categories, are involved in learning and process-
ing speech (e.g., Fowler, 2006; Lotto & Holt, 2006). To
address these issues, the present study characterized
changes in the neural response to complex nonspeech
stimuli that result from categorization training via the
implicit, multimodal video game paradigm of Wade and
Holt (2005).

One marker that can probe training-induced changes
in neural response to auditory stimuli is the MMN, a fronto-
central component of auditory ERPs that is evoked by
any perceptually discriminable change from a repeated
train of frequent (“standard”) stimuli to an infrequent
(“deviant”) stimulus (Näätänen, 1995; Näätänen & Alho,
1995; Näätänen, Gaillard, & Mäntysalo, 1978) and is also
sensitive to abstract stimulus properties (Paavilainen,
Simola, Jaramillo, Näätänen, & Winkler, 2001; Tervaniemi,
Maury, & Näätänen, 1994). It is thought to arise from a
sensory–memory trace encoding characteristics of the fre-
quently repeated “standard” stimuli (Haenschel, Vernon,
Dwivedi, Gruzelier, & Baldeweg, 2005). The amplitude
and latency properties of the MMN reflect the magnitude
of deviationbetween theoddball stimulus and the standard,
repeated stimulus. Furthermore, it occurs preattentively,

requires no explicit behavioral response, and can be
evoked while participants engage in other mental activi-
ties that do not obviously interfere with the stimuli being
processed (e.g., while watching a silent movie if stimuli
are auditory; Ritter, Deacon, Gomes, Javitt, & Vaughan,
1995; Näätänen, 1991). Thus, the MMN can serve as an
objective, quantifiable measure of the neural representa-
tions of auditory perception that emerge even during sim-
ple passive listening. Recent findings also suggest that
it can be used not only to probe early perceptual process-
ing but also as a reliable measure of higher level lexical,
semantic, and syntactic processing. For example, MMN
has been found to reflect distinctions betweenwords versus
nonwords in oneʼs native language, the frequency of words
as they occur in the native language, and the degree to
which a word string violates abstract grammatical rules
(for a full review, see Pulvermuller & Shtyrov, 2006). Fi-
nally, the MMN is malleable to learning and reflects learned
generalizations to novel stimuli (Tremblay, Kraus, Carrell,
& McGee, 1997), making it an appropriate measure for in-
vestigating the influence of short-term video game train-
ing on perceptual organization of nonspeech categories
in the current study.
The MMN has been frequently used to index the warp-

ing of perceptual space by learned speech categories. Prior
experiments with adult listeners have shown that pairs of
stimuli drawn from the same speech category evoke either
a small or a nonexistent MMN, whereas equally acoustically
distinct stimulus pairs drawn from different speech catego-
ries elicit a conspicuous MMN (Dehaene-Lambertz, 1997;
Näätänen & Alho, 1997; for a review, see Näätänen, 2001).
These responses reflect categories that are specific to
the native language (Rivera-Gaxiola, Csibra, Johnson, &
Karmiloff-Smith, 2000; Sharma & Dorman, 2000). Further-
more, studies designed to single out MMN responses to
purely phonetic change while controlling for acoustic
change (Shestakova et al., 2002; Dehaene-Lambertz & Pena,
2001; for a discussion, see Näätänen, Paavilainen, Rinne, &
Alho, 2007) have shown that there is a phonetic-change-
specific response that localizes to the left hemisphere in
most adults. Not surprisingly, data from infants (Cheour
et al., 1998) suggest that such MMN patterns are not pre-
sent from birth but rather emerge as a result of early native
language experience. Specifically, the acquisition of native
language speech categories between 6 and 12 months of
age is reflected in an enhanced MMN response to pairs
of sounds learned to be functionally distinct and thus be-
longing to different categories. The diminishment of MMN
for stimulus pairs drawn from within the same native-
language category may take longer to develop; it is not
yet observed among 12-month-old infants. In addition,
no laterality differences were reported in the MMN re-
sponses by 12 months of age, so this phonetic-change
marker may also be slower to develop relative to the en-
hanced across-category amplitude marker.
The present study combined a short-term, 5-day se-

quence of training on the Wade and Holt (2005) video
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game paradigm with two sessions of ERP recordings, one
before training and the other after. A comparison of the
pretraining and posttraining MMN responses with pairs
of novel stimuli belonging to one or more of the trained
categories allowed us to probe the effects of short-term
categorization training on the early neural response to
these sounds. We expected that the pretraining MMN
waves would reflect acoustic differences between the
stimuli because subjects would be naive to any functional
categories before playing the video game. We further hy-
pothesized that if, following training, participants were
able to successfully learn the nonspeech sound catego-
ries via mechanisms similar to those supporting the nat-
ural acquisition of speech categories, the pattern of MMN
changes should parallel those observed in prior studies
for speech category learning. That is, the main result
we expected to observe is a significant increase in the
MMN to pairs of nonspeech stimuli drawn from distinct
nonspeech categories; this would parallel the changes
in MMN observed in infant speech acquisition (Cheour
et al., 1998). We also predicted, to a lesser extent, an at-
tenuation of the MMN (relative to pretest baseline) to
pairs drawn from the same newly acquired category. Al-
though this change is not observed in early infant speech
acquisition, studies on adult listeners frequently report
little-to-no MMN response to within-speech-category pairs
(Dehaene-Lambertz, 1997; Näätänen & Alho, 1997), and
behavioral experiments have suggested that listeners typi-
cally exhibit a learned increase in the perceptual similar-
ity of within-category speech sounds as a consequence
of native language experience. This is proposed to occur
because category centroids behave like perceptual “mag-
nets,” drawing other exemplars closer in terms of per-
ceived similarity (Kuhl, 1991; for a review, see Kuhl, 2000).
The observation of changes in MMN patterns underly-
ing successful category learning through the game train-
ing paradigm would provide evidence that newly learned
nonspeech categories tap into some of the same neural
mechanisms observed to be malleable for speech categori-
zation (Kraus, McGee, Carrell, King, & Tremblay, 1995).

METHODS

Participants

Sixteen (9 men) adult volunteers aged 18–45 years (me-
dian age = 21 years) affiliated with Carnegie Mellon Uni-
versity or the University of Pittsburgh participated and were
paid for their time. All were right-handed native English
speakers, and none reported any neurological or hearing
deficits.

Video Game Training Paradigm

In the video game, players navigate through a pseudo-
three-dimensional space and are approached by one of

four visually distinct, animated alien characters at a time.
To succeed at the game, players must perform one of two
distinct sequences of coordinated keystrokes on the basis
of the identity of the character that approaches. Players
consistently respond to two of the characters, the ones
associated with Easy Category 2 and Hard Category 1,
with a keystroke sequence labeled “capturing”: holding
down the “R” key while navigating toward and keeping
the character in range using the arrow keys for a fixed
time period (after which the character is automatically
“captured”). Players respond to the other two characters,
the ones associated with Easy Category 1 and Hard Cate-
gory 2, with a keystroke sequence labeled “shooting”:
holding down the “Q” key, navigating to the character
using arrow keys and pressing the spacebar to shoot
the character. Each characterʼs appearance is consistently
paired with an experimenter-defined auditory category
comprised of a set of six different sounds (see Figure 1).
On each trial, the pairing is accomplished by presenting
the visual character accompanied by the repeated pre-
sentation of one randomly selected exemplar from the
corresponding sound category. The number of sound rep-
etitions heard per trial varies on the basis of how long the
player takes to execute a response, but because players
play for a fixed amount of time per session, there exists
an inverse relationship between the average number of
sound repetitions per trial and the number of trials in a ses-
sion. That is, if a player is advancing quickly, he or she will
hear fewer sounds repeated per trial but experience more
trials overall during the session. Thus, the total number of
game-relevant sounds heard in each session is roughly
equivalent across participants, regardless of skill or perfor-
mance in the game.

Players are not explicitly asked to form audio–visual or
audio–motor associations at any point in the game, they
are not instructed about the significance of the sounds,
and there is no overt sound categorization task. During
the game, players also hear ambient and game-play-relevant
sounds that are unrelated to the visual characters or to
the category training; these may further deter players
from explicitly recognizing the audio–visual relationships.
On each trial, however, because the onset of the re-
peated sound exemplar slightly precedes the visual ap-
pearance of each character, the sound categories are
highly predictive of the approaching character. As the
game progresses, the speed at which the characters ap-
proach increases and they become harder to identify vi-
sually, so the rapid anticipation of upcoming characters
through consistent multisensory association becomes grad-
ually advantageous for game performance. Thus, in an im-
plicit manner, the relationship of the sound categories to
multimodal regularities encourages participants to group
acoustically variable sounds into functionally equivalent cat-
egories. The effectiveness of this training paradigm in pro-
moting auditory category learning has been verified by
prior behavioral results in which, after only 30 min of play-
ing this game, participants showed significant nonspeech
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auditory category learning that generalized to novel, non-
trained stimuli (for extended discussion, see Wade & Holt,
2005).

For the purposes of the present experiment, we ex-
tended the training time to allow participants the oppor-
tunity to reach ceiling levels of performance in the game.
Results from pilot experiments suggested that five consec-
utive days of the 30-min training sessions were sufficient for
many participants to reach ceiling levels; thus, we adopted
this schedule of training in the current investigation.

Stimuli

Training Stimuli

For the training portion of this study, we used the four
categories of nonspeech sounds used in the Wade and
Holt (2005) behavioral experiments (for schematic spec-
trograms, see Figure 1; www.psy.cmu.edu/∼lholt/php/
gallery_irfbats.php for sound stimuli). Two of the cate-
gories (Easy Categories 1 and 2) were characterized by a
100-msec steady-state frequency followed by a 150-msec
frequency transition. These categories were differentiated
by an invariant, unidimensional acoustic cue. For one cat-
egory, the frequency transition portion of one component

increased in frequency across time; for the other category,
it decreased.
Critically, however, no such invariant cue distinguished

the other two categories (Hard Categories 1 and 2). Both
hard categories had exemplars with both rising and fall-
ing frequency patterns, and stimuli across the two hard
categories completely overlapped in their steady-state fre-
quencies. Only a higher order, interaction between onset
frequency and steady-state frequency created a percep-
tual space in which the two hard categories were linearly
separable (for a comprehensive discussion, see Figure 2;
Wade & Holt, 2005).
All stimuli were designed to have two spectral peaks,

P1 (carried by a square wave for all categories) and P2
(carried by a noise wave in the easy categories and by a
sawtooth wave in the hard categories). In the two easy
categories, P2 frequency is steady for the first 100 msec
and then rises or falls to an offset frequency during the
last 150 msec. In the two hard categories with sawtooth-
carried P2 components, P2 frequency either rises or falls
linearly from its onset during the first 150 msec and then
remains at a steady-state frequency for the final 100 msec.
The easy categories differ from the hard categories on
several dimensions: The temporal windows during which
both the P1 and the P2 frequencies are steady versus

Figure 1. Schematic diagram
of stimulus exemplars used in
training. The lower frequency
component (P1) is constant
within a category of sounds
and is paired with each of the
six higher frequency (P2)
components to form the six
sounds defining each category.
Visual characters and keystroke
sequences corresponding to
each sound category are shown.
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transitioning, the direction of P1 frequency change, and
the type of P2 carrier wave.
These stimuli capture many of the spectrotemporal

characteristics of speech sounds, including the composi-
tion based on combined spectral peaks (modeling speech
formants), the syllable-length temporal duration, the com-
bination of acoustic fine-structure modulated by time-
varying filters (as for consonantsʼ formant trajectories). The
category relationship among stimuli also mirrored speech
categories in the use of category exemplars that vary along
multiple spectrotemporal dimensions with overlap across
categories and lack of a single acoustic dimension that
can reliably distinguish the two hard categories. Despite
these similarities, the stimuli have a fine temporal struc-
ture unlike that of speech, and participants do not report
them as sounding “speech-like” at all (see Wade & Holt,
2005).

Test Stimuli

Previous research has demonstrated that with 30 min of
video game play, participants successfully learn both the
easy and the hard categories above chance level and gen-

eralize this category learning to novel sounds drawn from
the same categories (Wade & Holt, 2005). For the pur-
poses of the ERP portions of the experiment, we focused
on participantsʼ categorization of stimuli drawn from the
hard categories because learning categories defined by
noninvariant acoustic dimensions is a task more ecologi-
cally relevant to speech categorization and is more chal-
lenging than the trivial differentiation of rising versus
falling frequency transitions that define the easy catego-
ries. In addition, we wanted any changes in neural activity
to truly reflect changes in general categorization rather
than only the perception of specific exemplars that are
heard extensively in training. Thus, the ERP stimuli were
comprised only of novel, untrained sounds belonging to
the hard categories.

Four novel sounds drawn from the hard categories but
never heard by listeners during the video-game-based
training were selected for the ERP portion of the experi-
ment. The complex nature of these categories required
careful selection of test stimuli because there is no sim-
ple, single acoustic dimension that distinguishes the two.
Thus, the specific characteristics of the test stimuli were
selected by plotting the training stimuli of the two hard

Figure 2. Stimuli from the two
hard categories (not separable
by an invariant cue) plotted
in the higher order space
that reliably separates the
categories. Novel MMN stimuli
belonging to the two categories
were chosen such that, within
this space, Cartesian distances
for both within-category and
across-category STD/DEV pairs
were equated.
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categories in the higher order acoustic space in which they
are linearly separable (see Figure 2). Then, points in the
space were selected such that (1) there were two points
in each category, and (2) each point was equal in geo-
metric distance from its two nondiagonally adjacent points
in the higher order acoustic space. One point in each cat-
egory was selected to define the standard (STD) sound for
the MMN stream, and adjacent same-category (“within”
category) and opposite-category (“across” category) points
were assigned to define deviant (DEV) sounds for each
STD sound. Thus, the geometric distance between every
STD–DEV pair, regardless of category membership, was
equated in the higher dimensional acoustic space that lin-
early separates exemplars defining the two hard catego-
ries. Due to the complex nature of the perceptual space
within which categories were defined, we did not expect
all stimulus pairs to be equally discriminable to naive lis-
teners, as indexed by the pretraining MMN. However,
the use of a pretest versus posttest comparison of neural
responses with these stimuli provided individual baselines
against which we could assess changes in the MMN that
result from category learning.

Design and Procedure

Each participant played the video game for five consecu-
tive days, 30 min per day, and completed an EEG record-
ing session on the first day (before beginning training)
and on the fifth day (following the end of training).

Day 1

Participants engaged in a 2.5-hour EEG recording session
(see the following section for details). Immediately follow-
ing this session, each participant was given instructions
and asked to play the video game using the procedure de-
scribed by Wade and Holt (2005). During the instructions,
no explicit mention was made of the sound categories or
their importance to game performance. Participants were
instructed that their objective was to achieve the highest
possible score in the game. They wore headphones (Beyer
DT-100) calibrated to approximately 70 dB and played the
game for 30 min.

Days 2–4

Participants played the video game for 30 min each of
these 3 days, without any additional instructions.

Day 5

Participants played the video game for 30min. Immediately
following this session, a 10-min behavioral posttraining cat-

egorization task was administered in which participants
were presented, in random order, four repetitions of each
of 40 acoustic stimuli for a total of 160 trials. Each of the
four sound categories (see Figure 1) contributed 10 dis-
tinct sounds: 6 familiar sounds per category were drawn
directly from the sounds experienced in the game, and
the remaining 4 sounds were the novel sounds that listen-
ers were tested on during ERP sessions. The order of trial
presentation was determined by a random in-place shuffle
of all 160 trials. On each trial, participants heard the sound
repeated through headphones (Beyer DT-100) while they
saw the four visual alien characters of the video game and
chose the character that best matched the sound they
heard. Participants were instructed to respond as quickly
as possible. Sounds were repeatedly played, with a 30-msec
silent gap between presentations (as in the video game
training), and they terminated when a button response
was made. If participants failed to select a character within
the first 1.5 sec of the trial, they heard a buzz sound and
were presented with the next trial. Those trials to which
participants did not respond to in time were not repeated
later in the experiment and the responses were recorded
as incorrect. Following this task, participants engaged in a
2.5-hour posttraining EEG recording session that was pro-
cedurally identical to the pretraining session.

Electrophysiological Recording

The EEG waves were recorded, using Ag/AgCl sintered
electrodes embedded in an elastic fabric Quik-Cap, from
32 scalp locations arranged according to an extended 10–
20 array: FP1, FPz, FP2, F7, F3, Fz, F4, F8, FT7, FC3, FCz,
FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7,
P3, Pz, P4, P8, POz, O1, Oz, and O2 (naming system of
American Electroencephalographic Society; Sharbrough
et al., 1991). Additional electrodes were placed on both
the left and the right mastoid positions. Horizontal and
vertical EOGs were calculated from recordings of pairs of
electrodes placed on the outer canthus of each eye and
above and below the right eye, respectively. The ground
electrode was placed at location AFz. Signals were recorded
in continuous mode using Neuroscan Acquire software
(Compumedics NeuroScan, El Paso, TX) on a PC-based sys-
tem through SynAmp2 amplifiers. All electrode signals were
referenced to the left mastoid during recording, and im-
pedances were kept below 10 kΩ throughout each partici-
pantʼs session. The data were sampled at a rate of 1 kHz
with a band-pass filter of 0.1–200 Hz.
Stimulus presentation during EEG recording was di-

vided into four blocks, one to test each STD–DEV stimu-
lus pair (Set 1 STD and within-category DEV, Set 1 STD and
across-category DEV, Set 2 STD and within-category DEV,
and Set 2 STD and across-category DEV; see Figure 2).

Figure 3. Pretest butterfly plots, global field power (GFP), and dissimilarity (Dis) waves from 0 to 600 msec following stimulus onset and
topographic maps at the time of peak GFP (indicated on GFP plot by red line) for the MMN responses to all four STD–DEV pairs.
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Within each block, the STD and DEV stimuli were pre-
sented in a pseudorandom sequence across which at
least three consecutive standard stimuli separated any
two presentations of deviant stimuli. The sequence was
constructed by assigning a trial to be the STD sound
with 100% probability if preceded by fewer than three
consecutive STD trials or assigning it to be STD with 50%
probability and DEV with 50% probability if preceded
by three or more consecutive STD trials. This randomiza-
tion scheme results in the presentation of approximately
1600 standard (80%) and 400 deviant stimuli (20%). Sounds
were separated by a fixed stimulus onset-to-onset asyn-
chrony of 500 msec. The presentation order of the four
experimental blocks was counterbalanced across partici-
pants to eliminate any potential order effects. For each
participant, block order was kept constant for the pretrain-
ing and posttraining sessions. Each block was 17 min long,
and participants took a 3- to 5-min break between blocks,
for a total experiment length of approximately 80 min.
Participants were seated comfortably in an electrically

shielded experimental chamber and heard the stream
of acoustic stimuli presented diotically over headphones
(E-A-RTONE Gold 3A 50 ohm tubephone) while they
watched a self-selected movie without sound or subtitles.
Because the MMN reflects preattentive auditory deviance
detection, participants were instructed to ignore the sounds
and to focus on watching the movie.

Data Processing and Statistical Analyses

Data preprocessing was done using NeuroScan Edit soft-
ware. All EEG channels were first rereferenced to the
mean of the left and right mastoid recordings. The con-
tinuous EEG data were then band-pass filtered from 0 to
30 Hz and corrected for ocular movement artifacts using
a regression analysis combined with artifact averaging
(Semlitsch, Anderer, Schuster, & Presslich, 1986). Stimulus-
locked epochs that ranged from 100 msec before stimulus
onset to 500 msec after stimulus onset were extracted,
baseline corrected relative to the period from −100 to
0 msec before stimulus onset, and run through an arti-
fact rejection procedure in which epochs with amplifier
saturation or voltage changes greater than 100 μV were
automatically discarded. The stimulus-locked epochswere
averaged for each possible combination of participant, ses-
sion (pretraining vs. posttraining), stimulus pair (within vs.
across category, Sets 1 and 2), and stimulus type (standard
vs. deviant) to generate ERP waves. Finally, MMN responses
were calculated from the waves of every participant/session/
condition by subtracting the average response to the stan-
dard stimulus in each block from the average response to
the deviant stimulus with which it was paired.

Topographic and global field analyses were performed
using Cartool (http://brainmapping.unige.ch/Cartool.htm).
Well-defined MMN responses peaking between 100 and
300 msec were present in all four stimulus pairs at both
pretest and posttest, verified by visual inspection of butter-
fly plots and mean global field power peaks (Figures 3 and
4). Topographic analyses revealed that, for all four pairs at
both recording sessions, the MMN response was strongest
at electrode Fz. An extensive literature has shown that this
finding is typical in MMN studies (e.g., Winkler et al., 1999;
Näätänen et al., 1997; Sams, Paavilainen, Alho, & Näätänen,
1985; for a review, see Näätänen, 2001). We thus focused
the statistical analyses of averaged MMN waves on the re-
sponse measured at electrode Fz.

Raw data from the averaged waves were imported
into R (http://www.R-project.org) for statistical analyses.
Peak amplitude and peak latency values of each averaged
wave at electrode Fz were calculated across the range
of 100- to 300-msec poststimulus, where MMN is typi-
cally observed (Maiste, Wiens, Hunt, Scherg, & Picton,
1995; for a review, see Näätänen, 2001) and within which
peak amplitudes for all conditions in the present study
were observed.

RESULTS

Behavioral

Categorization accuracies across all participants on the
explicit posttraining task are summarized in Figure 5.
On the basis of data from the Wade and Holt (2005) be-
havioral studies, we expected that if participants success-
fully learned sound-character associations in the video
game, they would be able to match characters to sounds
significantly above chance (25%) level. Indeed, overall ac-
curacy across participants was well above chance, mean =
64.1%, t(15) = 9.03, p < .001. Furthermore, participants
showed evidence of learning the two difficult sound cate-
gories defined in higher dimensional acoustic space and of
generalizing the learning to untrained stimuli belonging to
the categories. Under the assumption that the task of dis-
tinguishing easy and hard categories from each other was
easily achieved (for empirical evidence, see Experiment 2
in Wade & Holt, 2005; Emberson, Liu, & Zevin, 2009),
chance level for successfully categorizing an exemplar
drawn from one of the two hard categories would be
50%. Participants showed performance significantly above
this level of categorization accuracy for familiar hard cate-
gory stimuli experienced in the video game,mean= 64.6%,
t(15) = 4.12, p < .001, as well as for novel sounds drawn
from the hard categories but not experienced during train-
ing, mean = 62.5%, t(15) = 2.14, p = .049. Thus, the ex-
plicit posttraining categorization task indicates that for

Figure 4. Posttest butterfly plots, global field power (GFP), and dissimilarity (Dis) waves from 0 to 600 msec following stimulus onset and
topographic maps at the time of peak GFP (indicated on GFP plot by red line) for the MMN responses to all four STD–DEV pairs.
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both the trained stimulus set and for the specific stimuli
tested in the MMN paradigm, participants reliably learned
the sound categories and generalized the learning to un-
trained stimuli.

Although the behavioral results show strong evidence
of learning across participants, there also was individual
variability in learning, as is typical of perceptual categoriza-
tion tasks (Leech, Holt, Devlin, & Dick, 2009; Tremblay,
Kraus, & McGee, 1998). Not all participants learned the
Hard sound categories robustly enough to generalize
them to the novel stimuli heard during ERP recording, judg-
ing by the conservative criterion of above 50% chance
level categorization accuracy for the novel stimuli alone.
This criterion was chosen to assure a stringent assessment
of hard category acquisition and generalization because
we expected that changes in MMN activity across training
consistent with our hypotheses should emerge only for
participants who learned successfully enough to correctly
categorize the novel sounds presented during ERP record-
ing. There were five nonlearners as indexed by a novel-
stimulus categorization accuracy of less than 50% (see
Figure 5), and we expected that these participants would

show little-to-no MMN changes in our hypothesized direc-
tions from pretest to posttest.
Posttraining categorization task performance also cor-

related positively with performance on the video game as
indexed by both maximum level (r = 0.55, p = .02) and
maximum score (r = 0.63, p = .009) achieved in the
game, confirming that success in the training paradigm
is strongly related to category learning and is a critical fac-
tor in explaining the individual differences seen in the
posttraining behavioral results (for extended discussion,
see Wade & Holt, 2005).
These results replicate the major findings reported by

Wade and Holt (2005) but reveal an even higher degree of
posttraining categorization performance for both trained,
t(24) = 2.793, p = .004, and novel, t(24) = 2.31, p = .03,
stimuli, measured by percentage of sounds accurately cate-
gorized in the explicit categorization task. Thus, extended
experience with the video game seems to yield even bet-
ter category learning. This further supports the efficacy of
this particular training paradigm in driving the formation
of distinct, spectrotemporally complex, and acoustically
noninvariant auditory categories.

Pretraining ERPs

We used novel, nonspeech sounds to acquire experimen-
tal control over listener experience while modeling some
of the complexities of speech category learning. How-
ever, the complex nature of the stimuli introduces some
challenges for using MMN as a method because MMN is
exquisitely sensitive to fine acoustic differences among
stimuli. We made efforts to orient our category distribu-
tions in acoustic space such that our STD–DEV stimulus
pairs were equivalently acoustically distinct (by equat-
ing the geometric distances of all pairs of stimuli in the
higher dimensional acoustic space that reliably separate
the categories). However, auditory perceptual space is
not homogeneous; discontinuities exist and are known
to influence the acquisition of auditory categories, includ-
ing speech categories (Holt, Lotto, & Diehl, 2004).
Acknowledging this, we examined the group-averaged

pretraining ERP waves (see Figure 6). Judging by differences
in averageMMNpeak amplitude andpeak latency across con-
ditions, it is evident that participants did not naively perceive
the pairs of sounds to be equally distinct across conditions.
Recognizing that these differences exist before experi-

ence with the nonspeech sounds, the critical measurement
in assessing category learning reflected at the neural level
was the relative change in MMN waves from pretraining to
posttraining for each STD–DEV stimulus pair. Participantsʼ
naive MMN responses to the stimuli serve as baselines by
which the influence of learning are assessed.

Changes in ERPs following Training

The averaged pretraining and posttraining ERP waves at
electrode Fz for the entire group of participants are shown

Figure 5. Categorization accuracy levels of all subjects on the
posttraining explicit categorization task. Overall accuracy values
reflect performance on both trained and novel stimuli. Novel stimuli
accuracy values reflect performance on the novel hard category
sounds that were heard during ERP recording. The two individuals
scoring below the 50% chance level for overall accuracy are a subset
of the five individuals scoring below chance level for novel stimuli
accuracy; these five individuals were identified as “bad learners” for
their failure to learn the categories robustly enough to generalize
them to the novel, untrained MMN stimuli.
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in Figure 6. Paired t tests run for each condition on peak
amplitudes and peak latencies of posttraining waves, rel-
ative to those for pretraining waves, revealed a signifi-
cant decrease in within-category peak amplitude, t(15) =
−2.7372, p = .008, and an earlier across-category peak la-
tency, t(15) = 2.598, p = .01, in stimulus Set 1. A signifi-
cant increase in across-category peak amplitude, t(15) =
3.0623, p = .004, was found in stimulus Set 2. No other
peak amplitude or latency changes were significantly dif-
ferent across training.
Considering the degree of individual variability that the

behavioral posttraining results revealed, we additionally
investigated the neural changes of only those participants
who exhibited robust learning and generalization for all
categories. On the basis of our hypotheses, we were most
interested in the neural changes underlying successful cat-
egory learning, so the subset of participants that showed
this behaviorally were most relevant for ERP analyses. To
this end, we averaged together pretraining and posttrain-
ing ERP waves for the “good learners” (n = 11), indexed
by above 50% posttest categorization accuracy (chance
level assuming the easy vs. hard category distinction has

been accomplished) for the novel ERP stimuli. These aver-
aged waves are shown in Figure 7. Paired t tests revealed
that, for stimulus Set 1, there was a significant decrease in
within-category peak amplitude, t(10) = −2.392, p = .01,
a significant increase in across-category peak amplitude,
t(10) = 1.753, p = .05, and earlier across-category peak
latency, t(10) = 2.261, p = .024. For stimulus Set 2, a sig-
nificant increase in across-category peak amplitude, t(10)=
3.4181, p = .003, was found.

Our primary objective was to investigate learning-driven
neural changes, but failures of learning are also informa-
tive. Although the video game training was successful in
training the majority (69%) of listeners to learn the catego-
ries, five participants did not exhibit behavioral evidence
of learning sufficient enough to generalize the categories
to untrained stimuli (see Figure 5). Because we predicted
changes in the MMN driven by category learning, we would
not expect significant MMN changes among these noncat-
egorizers. The video game training was effective enough
for this sample to be too small for strong statistical tests
(which would test a predicted null effect). However, quali-
tative observation of pretraining versus posttraining MMN

Figure 6. Pretraining and
posttraining MMN waves at
electrode Fz, averaged across
all participants (n = 16).
*Statistically significant
( p < .05) changes in either
peak amplitude or peak
latency from pretraining to
posttraining.
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among these participants indicates very little change com-
pared with those observed for participants who learned
the categories (see Figure 8). One exception is the within-
category pair in stimulus Set 2, which shows a decrease
in peak amplitude following training. Interestingly, this is
the only pair for which our hypothesized changes were
not statistically significant among the participants who
learned the categories well.

MMN was the chosen measure of neural change in this
investigation, as it has been extensively used in studies of
speech category acquisition, is malleable to training using
nonspeech stimuli, and can systematically index degree
of perceptual deviance by its magnitude. These charac-
teristics of the MMN allowed us to make specific, theoret-
ically driven directional predictions of expected changes
following our training paradigm. The P3a, a frontal aspect
of the novelty P3 response that sometimes follows MMN
in oddball paradigms in which the deviant stimulus is suf-
ficiently perceptually distinct from the standard stimulus,
has been less extensively studied in the speech categoriza-
tion and auditory training literature. Friedman, Cycowicz,
& Gaeta (2001) have argued that the P3a response marks

an involuntary capture of attention by the deviant event
as well as an evaluation of the event for subsequent behav-
ioral action. Because our paradigm was passive and partic-
ipants were specifically instructed not to attend to the
sounds, it was unclear whether the perceptual disparity
between sound pairs ought to elicit a P3a response at
either pretest or posttest. On the basis of visual inspection,
our data showed fairly distinct P3a responses in the post-
test ERP waves (Figures 4, 6–8). Focusing on the “good
learner” group as we did for the MMN results, an explora-
tory analysis reveals a significant increase (from pretest to
posttest) in the P3a peak amplitude for the across-category
stimulus Set 1 pair ( p < .005) as well as a marginally sig-
nificant increase for the across-category stimulus Set 2
pair ( p = .07). No other pairs showed significant direc-
tional changes in P3a amplitude from pretest to posttest.
The posttraining increase in P3a amplitude for across-
category stimuli may indicate that the video game training
cultivated an “attention-grabbing” orienting response to
changes in stimuli spanning across categories that de-
manded behaviorally distinct responses, but further experi-
mentation focusing specifically on this question and on

Figure 7. Pretraining and
posttraining MMN waves at
electrode Fz, averaged across
all “good learners,” those with
above-chance performance
on both trained and novel
stimuli on all categories
(n = 11). *Statistically
significant ( p < .05) changes
in either peak amplitude or
peak latency from pretraining
to posttraining.
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the P3a response as a marker is necessary to draw firm
conclusions.

DISCUSSION

Two and a half hours of video game training, spread
across five consecutive days, was sufficient for most par-
ticipants to learn noninvariant auditory categories that
were defined in higher dimensional acoustic space and
modeled some of the complexity of speech categories.
Listeners generalized to novel category exemplars not ex-
perienced in training, as evidenced by performance on an
explicit behavioral test. These results replicate and ex-
tend the behavioral findings of Wade and Holt (2005),
demonstrating that playing the game for longer periods
translates into better category learning.1 More generally,
these results demonstrate that listeners are able to learn
novel auditory categories modeled after speech catego-
ries without explicit feedback, suggesting that general
mechanisms of auditory category learning may contribute
to speech category learning. In the present work, we
aimed to assess the degree to which learning mechanisms

engaged by this category learning paradigm and those
that support speech category learning elicit common pat-
terns of change in neural response.

It is important to recognize that successful auditory cat-
egory learning in our experiment is the behavioral outcome
that is most analogous to the robust category acquisition
that occurs for natural speech. Thus, our conclusions are
focused on the training-induced MMN changes that were
observed in the subset of participants who were success-
ful category learners in our paradigm (Figure 7). Among
this group of learners, we observed a significant increase
in peak MMN amplitude for both across-category pairs,
suggesting an acquired perceptual distinctiveness between
pairs of stimuli trained to belong to different categories
(Lawrence, 1950). This finding nicely parallels those from
infant MMN data, which suggest that the primary changes
associated with natural speech category acquisition are
increases in across-category MMN amplitude for learned
native-language categories (Cheour et al., 1998). Further-
more, we also observed a significant decrease in within-
category MMN amplitude for one of the two stimulus sets.
This may reflect an acquired perceptual similarity between

Figure 8. Pretraining and
posttraining MMN waves at
electrode Fz, averaged across
all “bad learners,” those at
chance performance or below
on either trained or novel
stimuli in the two hard
categories (n = 5).
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within-category stimuli; both behavioral (Kuhl, 1991; for
a review, see Kuhl, 2000) and ERP (Dehaene-Lambertz,
1997; Näätänen, 1997) work have suggested that this is
characteristic of naturally acquired speech categories. There
are several reasons that may explain why we only observed
this acquired similarity for one pair of stimuli as opposed to
both. The naive, pretraining MMN to within-category pairs
was weak compared with those for across-category pairs,
which left less room for becoming weaker as a result of
training. In addition, the sound category input distributions
were not designed in a manner that emphasized internal
category structure (see Kluender, Lotto, Holt, & Bloedel,
1998; Kuhl, 1991), so therewas a lack of richwithin-category
distributional information. This may have promoted mech-
anisms of category learning that emphasized distinguishing
across-category exemplars rather than increasing within-
category exemplar similarity (see Guenther et al., 1999). Al-
ternatively, sensitivity to within-category similarities change
may develop more slowly. In the speech domain, infants
seem to show rapid changes in their neural responses to
across-category stimuli but not to within-category stim-
uli (Cheour et al., 1998), yet adults who have had more ex-
periencewith their native languages showdiminishedMMN
responses that suggest high level of within-category percep-
tual similarity.

The MMN changes observed across training appear to
result from auditory category learning and not from mere
exposure to the sounds during training or ERP recording.
The specific directional predictions that were supported by
the empirical results rely on the acquisition of category–
level relationships among novel sounds. Familiarity with
the sounds through mere exposure would predict more
uniform changes across all pairs. In addition, although all
listeners were exposed to the stimuli across five training
sessions, only the participants showing behavioral evi-
dence of category learning and generalization exhibited
the predicted MMN changes.

The degree to which the patterns of MMN change un-
derlying acquisition of complex nonspeech categories in
the current study parallel those found in studies of speech
category learning suggests that similar neural mechanisms
support both processes. This conclusion is additionally
supported by a recent fMRI study investigating the influ-
ence of learning within the Wade and Holt (2005) video
game training paradigm on the neural response to passive
presentation of the same nonspeech sounds used in the
present study. Before training, when participants had not
had experience with the sound categories, the nonspeech
sounds activated regions of left posterior STS relatively less
than they did posttraining when participants had learned
the auditory categories (Leech et al., 2009). This is particu-
larly interesting for interpreting the present results be-
cause the left posterior STS is typically activated more to
speech than to environmental sounds (Cummings et al.,
2006). Thus, this putatively speech-specific area may be
more generally involved in categorizing complex sounds
with which listeners have particular expertise. The present

MMN results indicate that, like speech categories, learning
nonspeech auditory categories affects perceptual process-
ing even within the first 300 msec following stimulus pre-
sentation. Furthermore, our results suggest that there may
be differences in the timing or specific mechanisms by
which increased across-category distinction and increased
within-category similarity are achieved as part of the cate-
gory acquisition process.
These results support a growing literature investigating

speech category acquisition as a general process rooted in
domain general, auditory perceptual, and cognitive mecha-
nisms (Leech et al., 2009; Goudbeek, Cutler, & Smits, 2008;
Holt & Lotto, 2006; Wade & Holt, 2005; Holt et al., 2004;
Mirman et al., 2004; Lotto, 2000; Guenther et al., 1999).
Analogous to findings from the “Greebles” literature that
suggest that mechanisms underlying face processing may
be based on acquisition of general visual expertise (Gauthier
et al., 1999; Gauthier & Tarr, 1997), the current MMN results
suggest that part of what makes speech processing seem
“unique” compared with nonspeech auditory processing is
the acquisition of expertise with speech sounds that comes
with linguistic experience and the perceptual changes elic-
ited by such expertise. This is particularly relevant in that
most studies comparing speech versus nonspeech neural
processingdonot control for level of expertisewithor degree
of category learning of the nonspeech stimuli (e.g., Benson
et al., 2001; Vouloumanos, Kiehl, Werker, & Liddle, 2001).
The ability to carefully manipulate listenersʼ experience

with nonspeech categories provides an opportunity to
investigate the learning mechanisms available to speech
category acquisition in greater depth than is typically pos-
sible with speech category learning. The present data
demonstrate robust auditory category learning, indexed
by both behavioral and neural signatures, with very short-
term training. This learning was elicited without an explicit
category learning task and without overt feedback, learning
characteristics that appear to be important in modeling the
natural acquisition of speech categories. The more natural
relationship of auditory categories to function within the
video game highlights the significance of implicit learning,
multisensory association, acquired functional equivalence
of stimuli that vary in physical properties, and intrinsic re-
ward in complex auditory category learning. Investigating
these processes in greater depth will be essential to under-
standing auditory category acquisition, in general, and speech
category acquisition, in particular. Leveraging the experi-
mental control afforded by nonspeech auditory category
learningparadigmsmakes suchdirect investigationspossible.
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Note

1. The longer training time of the present study (relative to that
of Wade & Holt, 2005) likely translated into a greater proportion
of successful category learners. However, the present study did
not explicitly manipulate overall training duration to determine
its potential effect on MMN independently, and it is possible that
similar changes in MMN may arise even for shorter training regi-
mens to the extent that they promote successful category learn-
ing. Conservatively estimating 4 hours of speech experience a
day, a 1-year-old child has heard nearly 1500 hours of speech. If
this experience includes just 200 exemplars of a particular speech
category each day, the 1-year-old child will have heard over 73,000
category instances. Compared with speech experience, the longer
training regimenʼs 2.5 hours is very brief, and it is notable that
such training induces neural changes similar to those observed
for speech categories.
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